metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D6.4D4, C23.9D6, D6⋊C4⋊5C2, (C2×C4).6D6, C2.8(S3×D4), C22⋊C4⋊3S3, C4⋊Dic3⋊4C2, C6.19(C2×D4), C6.8(C4○D4), Dic3⋊C4⋊10C2, C6.D4⋊4C2, (C2×C6).24C23, C2.10(C4○D12), C2.8(D4⋊2S3), (C2×C12).52C22, C3⋊1(C22.D4), C22.42(C22×S3), (C22×C6).13C22, (C2×Dic3).6C22, (C22×S3).17C22, (S3×C2×C4)⋊10C2, (C3×C22⋊C4)⋊5C2, (C2×C3⋊D4).3C2, SmallGroup(96,90)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.9D6
G = < a,b,c,d,e | a2=b2=c2=1, d6=e2=b, ab=ba, dad-1=ac=ca, eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d5 >
Subgroups: 186 in 78 conjugacy classes, 31 normal (29 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C4×S3, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C22.D4, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, S3×C2×C4, C2×C3⋊D4, C23.9D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C22.D4, C4○D12, S3×D4, D4⋊2S3, C23.9D6
Character table of C23.9D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 6C | 6D | 6E | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 4 | 6 | 6 | 2 | 2 | 2 | 4 | 6 | 6 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | 2 | -2 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 2i | 0 | -2i | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | -2i | 0 | 2i | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√-3 | √-3 | -√3 | -i | √3 | i | complex lifted from C4○D12 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √-3 | -√-3 | √3 | -i | -√3 | i | complex lifted from C4○D12 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√-3 | √-3 | √3 | i | -√3 | -i | complex lifted from C4○D12 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √-3 | -√-3 | -√3 | i | √3 | -i | complex lifted from C4○D12 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
(1 44)(2 23)(3 46)(4 13)(5 48)(6 15)(7 38)(8 17)(9 40)(10 19)(11 42)(12 21)(14 34)(16 36)(18 26)(20 28)(22 30)(24 32)(25 39)(27 41)(29 43)(31 45)(33 47)(35 37)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 25)(9 26)(10 27)(11 28)(12 29)(13 47)(14 48)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)(23 45)(24 46)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 24 19 18)(14 17 20 23)(15 22 21 16)(25 34 31 28)(26 27 32 33)(29 30 35 36)(37 44 43 38)(39 42 45 48)(40 47 46 41)
G:=sub<Sym(48)| (1,44)(2,23)(3,46)(4,13)(5,48)(6,15)(7,38)(8,17)(9,40)(10,19)(11,42)(12,21)(14,34)(16,36)(18,26)(20,28)(22,30)(24,32)(25,39)(27,41)(29,43)(31,45)(33,47)(35,37), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,47)(14,48)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,24,19,18)(14,17,20,23)(15,22,21,16)(25,34,31,28)(26,27,32,33)(29,30,35,36)(37,44,43,38)(39,42,45,48)(40,47,46,41)>;
G:=Group( (1,44)(2,23)(3,46)(4,13)(5,48)(6,15)(7,38)(8,17)(9,40)(10,19)(11,42)(12,21)(14,34)(16,36)(18,26)(20,28)(22,30)(24,32)(25,39)(27,41)(29,43)(31,45)(33,47)(35,37), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,47)(14,48)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(23,45)(24,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,24,19,18)(14,17,20,23)(15,22,21,16)(25,34,31,28)(26,27,32,33)(29,30,35,36)(37,44,43,38)(39,42,45,48)(40,47,46,41) );
G=PermutationGroup([[(1,44),(2,23),(3,46),(4,13),(5,48),(6,15),(7,38),(8,17),(9,40),(10,19),(11,42),(12,21),(14,34),(16,36),(18,26),(20,28),(22,30),(24,32),(25,39),(27,41),(29,43),(31,45),(33,47),(35,37)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,25),(9,26),(10,27),(11,28),(12,29),(13,47),(14,48),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44),(23,45),(24,46)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,24,19,18),(14,17,20,23),(15,22,21,16),(25,34,31,28),(26,27,32,33),(29,30,35,36),(37,44,43,38),(39,42,45,48),(40,47,46,41)]])
C23.9D6 is a maximal subgroup of
C24.38D6 C24.41D6 C24.42D6 C42.93D6 C42.94D6 C42.95D6 C42.99D6 C42⋊14D6 D12⋊24D4 C42⋊18D6 C42.229D6 C42.114D6 C42.116D6 C42.118D6 C42.119D6 C24⋊7D6 C24.44D6 C24.46D6 C24.47D6 C6.342+ 1+4 C6.372+ 1+4 C4⋊C4⋊21D6 C6.732- 1+4 D12⋊20D4 C6.442+ 1+4 C6.472+ 1+4 C6.492+ 1+4 C6.162- 1+4 D12⋊22D4 C6.202- 1+4 C6.212- 1+4 C6.242- 1+4 C6.252- 1+4 C6.592+ 1+4 S3×C22.D4 C6.822- 1+4 C6.1222+ 1+4 C6.622+ 1+4 C6.632+ 1+4 C6.642+ 1+4 C6.652+ 1+4 C6.662+ 1+4 C6.852- 1+4 C6.682+ 1+4 C6.692+ 1+4 C42.137D6 C42.141D6 D12⋊10D4 C42⋊22D6 C42⋊23D6 C42.234D6 C42.143D6 C42.145D6 C42⋊25D6 C42⋊26D6 C42.189D6 C42.161D6 C42.162D6 C42.165D6 C23.9D18 C62.23C23 C62.24C23 D6.9D12 C62.75C23 C62.111C23 C62.117C23 C62.227C23 D30.34D4 D30.D4 D10⋊C4⋊S3 D6.9D20 (S3×C10).D4 D30.16D4 D30.28D4
C23.9D6 is a maximal quotient of
C6.(C4×D4) C2.(C4×Dic6) C6.(C4⋊Q8) (C2×Dic3).9D4 C22.58(S3×D4) D6⋊C4⋊C4 (C2×C4).21D12 C6.(C4⋊D4) D6.D8 D6.SD16 D6⋊C8⋊11C2 C24⋊1C4⋊C2 D6.1SD16 D6.Q16 D6⋊C8.C2 C8⋊Dic3⋊C2 C24.15D6 C24.18D6 C24.19D6 C24.20D6 C24.23D6 C24.25D6 C24.27D6 C23.9D18 C62.23C23 C62.24C23 D6.9D12 C62.75C23 C62.111C23 C62.117C23 C62.227C23 D30.34D4 D30.D4 D10⋊C4⋊S3 D6.9D20 (S3×C10).D4 D30.16D4 D30.28D4
Matrix representation of C23.9D6 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,12,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[1,0,0,0,0,0,1,12,0,0,0,0,0,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,12] >;
C23.9D6 in GAP, Magma, Sage, TeX
C_2^3._9D_6
% in TeX
G:=Group("C2^3.9D6");
// GroupNames label
G:=SmallGroup(96,90);
// by ID
G=gap.SmallGroup(96,90);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,55,218,188,2309]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^6=e^2=b,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^5>;
// generators/relations
Export